Large and moderate deviations principles for kernel estimators of the multivariate regression
نویسندگان
چکیده
Abstract : In this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for the semi-recursive kernel estimator of the regression in the multidimensional case. Under suitable conditions, we show that the rate function is a good rate function. We thus generalize the results already obtained in the unidimensional case for the Nadaraya-Watson estimator. Moreover, we give a moderate deviations principle for these two estimators. It turns out that the rate function obtained in the moderate deviations principle for the semi-recursive estimator is larger than the one obtained for the Nadaraya-Watson estimator.
منابع مشابه
Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives
Abstract: In this paper we prove large and moderate deviations principles for the recursive kernel estimator of a probability density function and its partial derivatives. Unlike the density estimator, the derivatives estimators exhibit a quadratic behaviour not only for the moderate deviations scale but also for the large deviations one. We provide results both for the pointwise and the unifor...
متن کاملLarge and Moderate Deviation Principles for Kernel Distribution Estimator
In this paper we prove large and moderate deviations principles for the kernel estimator of a distribution function introduced by Nadaraya [1964. Some new estimates for distribution functions. Theory Probab. Appl. 9, 497500]. We provide results both for the pointwise and the uniform deviations. Mathematics Subject Classifiation: 62E20, 60F10
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملModerate deviations of generalized method of moments and empirical likelihood estimators
This paper studies moderate deviation behaviors of the generalized method of moments and generalized empirical likelihood estimators for generalized estimating equations, where the number of equations can be larger than the number of unknown parameters. We consider two cases for the data generating probability measure: themodel assumption and local contaminations or deviations from the model as...
متن کاملOn the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007